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The problem of reconstructing the charge density of a non-periodic sample from

its diffuse X-ray scattering is considered. For a sample known to be isolated, an

arti®cial superlattice may be assumed and the numerical direct methods of

crystallography applied to the continuous distribution of diffuse scattering in

order to solve the phase problem. This method is applied to simulated soft-X-ray

transmission speckle patterns from a two-dimensional array of gold balls of

50 nm diameter. The results are relevant to efforts to phase the scattering from

many individual macromolecules that cannot be crystallized, and to the

scattering from individual inorganic nanoparticles.

1. Introduction

The high brightness of modern synchrotron sources now

suggests the possibility of collecting continuous atomic reso-

lution diffraction data from individual nanostructures, which

may be poorly crystalline or not crystalline. Recent work, for

example, proposed for pulsed X-ray sources is aimed at

reconstructing charge densities at atomic resolution from

diffraction patterns collected from successive identical

macromolecules that cannot be crystallized (Neutze et al.,

2000; Miao et al., 2001). For inorganic nanostructures, where

radiation damage is less severe and continuous sources can be

used, the large number of atoms present in submicrometre

particles presents a severe challenge to numerical methods of

phasing (Robinson et al., 2001). Experimental problems in the

handling and mounting of particles not visible under optical

microscopes also presents dif®culties. The deposition of

particles from solution onto micrometre-sized silicon nitride

windows has been used to address this issue (He et al., 2003).

A more tractable experimental project might be based on

the use of a set of identical small particles, whose scattering

properties are known, instead of atoms, in the direct-methods

analysis. This then allows one to take advantage of the strong

interaction and high spatial coherence of soft X-ray synchro-

tron undulator sources, which can provide suf®ciently strong

scattering from such small diffracting volumes.

To estimate the recording times involved, we may take a

single inorganic nanoparticle consisting of about n = 2000

atoms (the maximum that might be phased using direct

methods, as discussed below), with Z = 80, and use a total

scattering cross section � = nZ�e, where �e is the Thomson

electron scattering cross section. For the proposed Energy

Recovery Line (ERL) at Cornell in continuous high-

coherence mode, an average brilliance of

1022 photons sÿ1 (0.1%)ÿ1 mmÿ2 mradÿ1 is expected (Shen,

2001), giving about one count per second per pixel for a

1 K � 1 K CCD camera in the absence of background.

This paper describes a contribution to this general effort, in

which we have simulated the diffuse soft-X-ray transmission

diffraction pattern from a two-dimensional array of randomly

positioned gold balls, whose coordinates were obtained from

an experimental sample described in a companion paper (He

et al., 2003). 50 nm diameter balls are assumed and a 2.1 nm

X-ray wavelength. We then invert this simulated diffraction

pattern using direct methods to obtain the ball coordinates.

The scattering factor for a single ball is calculated and replaces

the atomic scattering factor normally used in direct methods.

2. Sampling and diffuse scattering

The direct-methods approach to determining the phases of

structure factors is normally applied to the Bragg intensities

diffracted by a crystal. Here we apply it to the diffuse scat-

tering from a non-periodic object, in the form of an isolated

cluster of gold balls. For a wavelength of � = 2.1 nm and a

single ball of diameter d = 50 nm, a continuous Airey-disc-like

transmission pattern of scattering can be expected, with a ®rst

minimum very approximately at sin '0=� = 1.2=d, with '0 the

scattering angle. For a two-dimensional cluster of balls lying

on a transparent silicon nitride membrane, this pattern will

be broken up into speckles owing to interference between

different balls. (For two balls, the Airey disc would be crossed

by Young's fringes.) We assume complete spatial and temporal

coherence in the beam. Fig. 1 shows the positions of the balls

assumed in this study, based on a scanning-electron-micro-
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scope (SEM) image of an experimental sample prepared for a

related project (Spence et al., 2002; He et al., 2003), in which

the use of the Fienup hybrid input±output algorithm was

evaluated for phasing experimental diffuse scattering from

this sample. Table 1 gives the coordinates of the atoms.

If we consider a one-dimensional analysis for simplicity, in

which the balls are known a priori to lie entirely within a

domain of width W, then the Whittaker±Shannon sampling

theorem guarantees that the entire continuous distribution of

scattering can be reconstructed from a knowledge of its

complex samples taken at spacings n=W = sin 'n=� =

2 sin �n=� = �S apart in reciprocal space (Bracewell 1965).

(Sampling at half this interval would be needed to reconstruct

all the diffracted intensity from samples of the intensity, since

the intensity transforms to the larger autocorrelation func-

tion.) No information is lost provided this �S, or smaller

sampling, is used while working with the complex diffracted

amplitudes. These samples may therefore be treated as the

`Bragg beams' to be used in the direct-methods algorithm,

with �n playing the role of the Bragg angle. Evidently, a choice

of camera length is required experimentally, which ensures

that the pixels of the recording device sample the diffuse

scattering at these sampling angles 'n. Equally importantly, it

is essential that no material outside the domain of size W

contributes to the diffraction pattern, and this is the most

dif®cult condition to satisfy experimentally. We shall refer to

W as the arti®cial superlattice dimension. Thus we assume a

square latttice with cell constant W, symmetry P1. The

assumptions of direct methods, of non-negative charge density,

of discrete non-vibrating point `atoms' will then be applied to

our non-periodic isolated cluster of gold balls (Giacovazzo,

1998). We thus assume that it is possible to make such an

isolated object of approximately known size. Note that the

Shannon sampling theorem does not predict that the over-

sampled values at �S=2 are redundant (because they can be

reconstructed from our `Bragg' intensities recorded at inter-

vals �S) ± to do that, one would need the complex `Bragg'

amplitudes, which are not measured.

3. Soft X-ray scattering factor for a single gold ball

The soft X-ray wavelengths of about 2 nm typically used for

speckle research mean that the atoms of the scattering

material are not resolved. The scattering distribution is

related, in the Born approximation, to the Fourier transform

of the refractive-index variation if absorption is negligible

(Kirz et al., 1995). For the small-angle scattering involved, we

use a phase-object approximation to calculate the scattering

factor for a single `phase ball'. With n = (1 ÿ �) ÿ i� =

1 ÿ 0.00409176 ÿ i0.00352867, the refractive index for gold at

588 eV (� = 2.1 nm), a phase shift of 0.6 rad is introduced at a

thickness of 50 nm of gold. Absorption is neglected. If the

beam direction is z, then the thickness of a ball of radius c is

t�r� � 2�c2 ÿ r2�ÿ1=2; �1�
where r is a two-dimensional vector normal to the beam. Then

the phase change is ��r� � 2�t�r��=� and depends on the

thickness and refractive index of the materials. The real part of

the refractive index is � � �re�
2=2��naf , with na atoms per unit

Table 1
Fractional atomic coordinates (x0, y0) used in constructing the structure
model shown in Fig. 1, based on a SEM image of a sample.

The cell constant W = 3200 nm. The lattice is square. Coordinates read from
the retrieved structure solved by SIR2002 (x1, y1); and coordinates (x2, y2)
calculated from (x1, y1) when they have the same origin as the starting model.

Coordinates of the
starting model

Coordinates of the
retrieved structure

Coordinates by rotating
and shifting origin to
the same position

n x0 y0 n1 x1 y1 x2 y2

1 0.3223 0.8301 Au24 0.533 0.517 0.3225 0.8293
2 0.3516 0.8125 Au25 0.504 0.535 0.3515 0.8114
3 0.3340 0.8105 Au8 0.523 0.536 0.3325 0.8103
4 0.3125 0.8047 Au10 0.542 0.541 0.3135 0.8053
5 0.3242 0.7871 Au2 0.531 0.632 0.3246 0.7143
6 0.3027 0.7852 Au16 0.551 0.561 0.3045 0.7853
7 0.2852 0.7852 Au4 0.571 0.561 0.2845 0.7853
8 0.3398 0.7754 Au11 0.515 0.571 0.3405 0.7754
9 0.3184 0.7715 Au14 0.537 0.578 0.3185 0.7683

10 0.2988 0.7578 Au27 0.557 0.587 0.2985 0.7593
11 0.3418 0.7148 Au3 0.516 0.632 0.3396 0.7144
12 0.3184 0.7090 Au15 0.536 0.635 0.3196 0.7113
13 0.2988 0.7148 Au26 0.560 0.633 0.2956 0.7133
14 0.2793 0.7227 Au18 0.577 0.625 0.2786 0.7213
15 0.3418 0.6953 Au20 0.513 0.652 0.3426 0.6944
16 0.3242 0.6914 Au7 0.531 0.656 0.3246 0.6903
17 0.2813 0.6973 Au13 0.574 0.649 0.2816 0.6973
18 0.3066 0.6816 Au23 0.549 0.666 0.3066 0.6803
19 0.2871 0.6758 Au9 0.569 0.670 0.2866 0.6763
20 0.3320 0.6699 Au28 0.523 0.674 0.3326 0.6723
21 0.3164 0.6582 Au1 0.540 0.688 0.3156 0.6583
22 0.2949 0.6543 Au6 0.560 0.692 0.2956 0.6543
23 0.2773 0.6621 Au21 0.578 0.685 0.2776 0.6613
24 0.2656 0.6797 Au12 0.588 0.667 0.2676 0.6793
25 0.0938 0.4961 Au19 0.762 0.850 0.0938 0.4961
26 0.2871 0.0449 Au17 0.569 0.302 0.2862 0.0443
27 0.2871 0.0215 Au22 0.569 0.324 0.2863 0.0223
28 0.2676 0.0195 Au5 0.588 0.327 0.2673 0.0193

Figure 1
Positions of the 50 nm diameter gold balls assumed in this study.



volume, re the classical electron radius and f the atomic scat-

tering factor for one Au atom. Away from absorption edges,

the charge density is related to � by ��r� � �2�=re�
2���r�.

If the iconal approximation is made, such that the wave®eld

across the downstream face of the two-dimensional array of

balls can be computed along a single optical path through the

balls, then a transmission function, giving the ratio of the exit-

face wave®eld to the incident wave®eld can be de®ned as

q�r� � exp�2�it�r��=�� � exp�i��r��: �2�
This assumes that Fresnel broadening of the wave®eld is

negligible within the ball, and so is equivalent to the

assumption of a planar Ewald sphere. This is a good ap-

proximation if tmax < d2=�, for spatial frequency (resolution) d

and a maximum ball thickness tmax. The approximation thus

fails for hard X-rays at atomic resolution, but is reasonable for

50 nm diameter balls at � = 2.5 nm out to a resolution of about

10 nm. The scattering factor of one gold ball is the two-

dimensional Fourier transform of the transmission function:

f ball�u� � R



q�r� exp�ÿ2�iu � r� d
; �3�

where u = sin '=�. It is convenient to use r±� coordinates in

the integration since the function is radially symmetric:

f ball�u� � Rc
0

r expf�4�i��c2 ÿ r2�1=2�=�g dr

� R2�
0

exp�ÿ2�iu � r cos �� d�;

where � is the angle between u and r. In terms of the zero-

order Bessel function

J0�z� � �1=2�� R2�
0

exp�ÿiz cos �� d�;

we have:

f ball�u� � 2�
Rc
0

r expf�4�i��c2 ÿ r2�1=2�=�gJ0�2�u � r� dr: �4�

This two-dimensional Fourier transform of a circularly

symmetric function is a Hankel transform of order zero. This

may be written in terms of sums over certain generalized

hypergeometric functions and 
 functions, or expanded in

other ways. The integral can also be solved by numerical

integration. The calculated scattering factors of the `phase

ball' are complex, which implies that the scattering phases are

not zero, as in the usual kinematic approximation.

We now consider whether Friedel's law holds for these

complex scattering factors. Since the zero-order Bessel func-

tion is an even function f(u) = f(ÿu) = | f | exp(i�), the structure

factors for u and ÿu are:

F�u� �P
i

fi�u� exp�i�� exp�2�iu � ri�

F�ÿu� �P
i

fi�u� exp�i�� exp�ÿ2�iu � ri�:

The complex conjugate of F(u) is:

F��u� �P
i

fi�u� exp�ÿi�� exp�ÿ2�iu � ri�:

F(ÿu) is no longer the complex conjugate of F(u). However,

since all the balls are assumed to scatter equally, the scattering

amplitudes remain equal, but phases no longer reverse sign

under inversion. For a general function t(r) in this iconal

approximation, such as would result from many different balls,

Friedel's law does not apply to the scattering. We assume

identical balls, and hence that Friedel's law, which requires Iu =

Iÿu, will apply for these complex scattering factors. For smaller

balls, such that � < �=2, we have exp[i�(r)] ' 1 � i�(r), then

the Fourier transform becomes

=�1� i��r�� � 2�
Rc
0

rf�1� i4���c2 ÿ r2�1=2�=�gJ0�2�u � r� dr

� 2�
Rc
0

rJ0�2�u � r� dr

� i�8�2�=�� Rc
0

r�c2 ÿ r2�1=2J0�2�u � r� dr; �5�

in which the ®rst term represents the undiffracted beam and

the second term, which is the Fourier transform of �(r), is

equal to the scattering factor of a gold ball in the kinematic
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Table 2
List of the scattering factors of the `phase ball': their assigned index h, k
and scattering vector s, moduli |F| and phase (') of the scattering factor.

h k s (AÊ ÿ1) |F| Phase (') (�)

0 0 0 49.8299 1.38741
0 3 0.00009375 49.6775 ÿ2.17654
0 4 0.000125 49.5592 0.824723
0 5 0.00015625 49.4075 ÿ2.45697
0 6 0.0001875 49.2225 0.544761
0 7 0.00021875 49.0044 ÿ2.73646
0 8 0.00025 48.7538 0.265744
0 11 0.00034375 47.810 2.99065
0 14 0.0004375 46.589 ÿ0.565288
0 15 0.00046875 46.1232 2.43874
0 20 0.000625 43.3862 ÿ1.38611
0 25 0.00078125 40.0510 1.081
0 28 0.000875 37.8164 ÿ2.46018
0 33 0.00103125 33.8077 0.0260841
0 38 0.0011875 29.5924 2.52952
0 44 0.001375 24.5350 1.79556
0 47 0.00146875 22.1174 ÿ1.69539
0 48 0.0015 21.3410 1.33297
0 55 0.00171875 16.5398 ÿ2.5462
0 58 0.0018125 14.9435 0.312414
0 63 0.00196875 13.0830 3.02169
0 66 0.0020625 12.4702 ÿ0.366913
0 71 0.00221875 12.1641 2.35148
0 78 0.0024375 12.5733 ÿ1.45913
0 87 0.00271875 13.0460 0.685628
0 102 0.0031875 11.2654 1.98972
0 119 0.00371875 5.6846 3.08236
0 138 0.0043125 3.0356 ÿ0.706303
0 149 0.00465625 5.33447 1.33431
0 158 0.0049375 6.21723 ÿ2.95001
0 167 0.00521875 5.93688 ÿ1.00205
0 188 0.005875 1.81899 ÿ0.596501
0 211 0.00659375 3.56755 2.18732
0 228 0.007125 4.57765 2.98487
0 233 0.00728125 4.23598 ÿ0.855169
0 248 0.00775 1.8013 0.18083
0 251 0.00784375 1.14399 2.89991
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approximation. Since the scattering factor of one ball is now

real for a weak phase object, Friedel's law will then hold also

for weakly scattering balls (even if not identical) and, in

addition, F(u) = F�(ÿu).

4. Direct methods applied to an artificial superlattice

Fig. 1 shows the structural model of the phase `balls'. Each ball

has a diameter of 8 pixels and the whole image is

512 � 512 pixels. Since the diameter of each ball is 50 nm, the

resulting computational square supercell has dimension W =

3200 nm. The diffraction pattern also has dimension 512 � 512

with largest index 256. The ®rst pixel beside the origin of

reciprocal space corresponds to 1=3200 nmÿ1, and the

maximum data resolution is then 8.84 nm, about 17.7% of the

diameter of the gold ball. We have assumed � = 2.1 nm, hence

the scattering angle for the ®rst pixel is � = �=d = 2.1=3200 =

0.00066 rad. Using a pixel size of dp = 24 mm, the object±

detector distance L in our simulation becomes L = dp=� =

36.6 mm.

The simulated diffraction pattern is shown in Fig. 2: this is

the continuous distribution of scattering, then it is sampled at

intervals un = nW. In practice, we treat the intensity in the ®rst

pixel besides the center as if it were a ®rst-order Bragg beam.

The space group was set as P1. A one-dimensional repre-

sentation of the scattering factor (both the amplitudes and

phases) for one `phase ball' is shown in Fig. 3(a). The modulus

of the Fourier transform of a single phase ball is shown in Fig.

3(b). The limited number of pixels per ball accounts for the

lack of circular symmetry. The variation of the amplitude and

phase for one phase ball's scattering factor with scattering

vector u is given in Table 2.

To apply direct methods, we ®rst normalize structure factors

according to

Eh �
P

j

fj�h� exp�2�ih � rj�
.hP

j

fj�h�2
i1=2

: �6�

Assuming that all balls are identical, (6) reduces to

Eh � Nÿ1=2
P

j

exp�2�ih � rj�: �7�

To obtain the normalized structure factors (7), we have

divided the calculated speckle pattern by another speckle

pattern which is the Fourier transform of a single ball (Fig. 3b).

Then the normalized intensities |Eh|2 of each beam were read

from the resulting pattern: in this situation, the normalized

scattering of the ball is considered a constant, equal to Nÿ1=2,

independent of scattering angle. The pattern obtained when

Fig. 2 is divided by Fig. 3(b) is shown in Fig. 4.

We now treat the sampled values of the diffuse scattering as

Bragg beams by a direct-methods procedure. We used the

SIR2002 (Burla et al., 2002) program to determine the posi-

tions of the gold balls. An advantage of the program is that it

can handle two-dimensional intensity data: in addition, it was

properly modi®ed to handle very high two-dimensional

indices (up to 512).

The tangent procedure is started from random phases: the

various trial solutions are then processed by a real-space

re®nement including the following steps:

(a) EDM, an electron-density-modi®cation procedure,

consisting of 2 supercycles, each constituted by 5 microcycles

�! {'}! �. The symbol � represents the electron-density

map, calculated by using all the measured scattering ampli-

tudes, the phases are evaluated through the map inversion.

(b) HAFR, constituted by 6 cycles �! {'}! �. In this step,

the calculated structure factor is obtained by associating the

normalized scattering factor of the ball (Nÿ1=2) with the

selected peaks in the electron density map.

(c) FR, a Fourier recycling routine (6 cycles), which opti-

mizes the isotropic displacement parameter for all `atoms'.

(d) DLSQ, a procedure that alternates least squares and

(2Fobs ÿ Fcal) map calculations to re®ne and complete the

structural model.

The quality of the trial solutions is checked at the end of the

phasing process via the crystallographic residual

RES �P jjFobsj ÿ Fcalcjj=
P jFobsj:

As seen in Table 1, SIR2002 easily recovers all the positions of

the gold balls: the process ends with a RES value of 0.0026.

In a real experiment, part of the diffraction pattern

is lost owing to a beam stop blocking the direct beam.

The hybrid input±output algorithm (HiO; Fienup, 1982)

proved to be rather sensitive (Miao et al., 2001) to the

presence of the data in the central patch when using experi-

mental data rather than simulated data. To check the sensi-

tivity of the SIR2002 algorithm, we omitted from the

procedure all the data contained in a 50 pixel radius circular

area at the center of the pattern, much larger than the region

Figure 2
Simulated speckle pattern by Fourier transform of the gold balls shown in
Fig. 1 and assuming each ball as a `phase ball'.



typically obscured by a beam stop. All the ball positions were

recovered, with the same RES value.

We now consider the relationship between the HiO and the

SIR2002 algorithm. According to the HiO oversampling

method (Miao et al., 2001), sampling a diffraction pattern

more ®nely than a Nyquist or `Bragg' sampling frequency is

equivalent to surrounding the electron density of the scat-

tering object by a region of zero scattering density. Sampling

at twice the Bragg frequency extracts suf®cient information

from the diffracted intensity to solve the phase problem using

iterative algorithms (Fienup, 1982; Spence et al., 2002).

Progressively zeroing or depleting the zero-density area is the

basis of the HiO algorithm, and so is akin to density-modi®-

cation methods in crystallography. The use of direct methods

applied to samples of diffuse scattering taken at half the

`Bragg' angle (with corresponding application of a zero-

density region outside the object boundary) may therefore

have advantages. The SIR2002 algorithm does not explicitly

use this information: the convergence of the phasing process is

obtained by inverting up to about 3.5% of the electron density,

no matter where (in the unit cell) it is. This ensures conver-

gence even when the phases provided by the tangent formula

are found relative to an origin different from that assumed by

the HiO algorithm. So far, despite impressive simulations, we

have not been successful in combining the HiO and direct-

methods approaches in application to experimental data.

Fig. 5(a) shows a charge-density map of the balls based on

these coordinates, and this is compared in Fig. 5(b) with a

SEM image of the object.

5. Discussion and conclusions

We have shown that the direct-methods (DM) approach may

be extended to non-periodic objects, and so used to phase
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Figure 4
Calculated speckle pattern using the complex amplitudes in Fig. 2 divided
by Fig. 3(b). The scattering factor of a gold ball can then be treated as
constant using the resulting set of data.

Figure 3
(a). The amplitudes and phases of the calculated scattering factors of the
`phase ball'. Note that the phases are not constant as for kinematic
scattering. (b) Fourier transform of a single `phase ball'.



research papers

260 J. C. H. Spence et al. � Solving non-periodic structures Acta Cryst. (2003). A59, 255±261

diffuse scattering from an isolated object. In a companion

paper (He et al., 2003), we describe experimental work in

which images of these same balls are recovered using the

hybrid input±output iterative algorithm, together with a

knowledge of the cluster outlines.

Our use of soft X-rays was indicated by their high coher-

ence and strong interaction (needed to obtain suf®cient signal

from such a small scattering volume), and the use of gold balls

instead of atoms then follows from the wavelength limit on

resolution and the limited number of `atoms' that can be

handled using direct methods.

Any experimental implementation of this approach must

consider carefully the following. Friedel's law is assumed in

the DM algorithm we used. Departures from it in experi-

mental data might be expected owing to several factors: (i)

Absorption effects may be small within a silicon nitride

supporting window, but may be larger for balls lying on

partially transparent material surrounding the window. (ii)

The occurrence of phase shifts larger than �=2 in (2). For

example, phase shifts introduced across the silicon border

surrounding a silicon nitride window would differ at each ball,

rendering them inequivalent and hence leading to failure of

Friedel symmetry. (iii) Strains in the sample may cause a

failure of Friedel's law. This might arise from icosahedral

mis®t in the gold spheres. (iv) The illuminating wavefront must

be planar. Large phase shifts impressed across the object by

the illumination would make the balls inequivalent phase

objects, with large phase differences. We note that a statistical

variation in the size of the balls will not violate Friedel

symmetry provided the phase shift across the balls is small. (In

our case the phase shift is 0.6 rad.)

The formation of an isolated object containing a suf®ciently

small number of atoms presents serious experimental

problems, however several schemes have been proposed to

achieve this, using, for example, macromolecules injected into

vacuum across a pulsed beam (Neutze et al., 2000). The use of

DM is restricted to atomic resolution data and to nano-

structures containing fewer than about 2000 atoms, with about

seven strong `beams' (detector pixels) per atom. However, the

ability to determine some phases for larger structures could

prove very powerful, since a knowledge of phase is a convex

constraint (He et al., 2002). It can therefore be expected to

improve greatly the convergence of iterative phasing schemes

based on the Fienup±Gerchberg±Saxton algorithm (Fienup,

1982; Elser, 2003), which has much in common with the

electron-density-modi®cation approach used in crystal-

lography (Spence et al., 2002). A powerful approach to larger

nanostructures when atomic resolution data is used with

coherent hard X-rays may therefore combine features of both

the direct-methods approach and the iterative algorithms. One

may use, for example, a support or object mask consisting of

the autocorrelation function of the object in combination with

DM. The object density is set to zero outside the masked

regions. In this way, improved reconstructions might be

obtained that require a less detailed knowledge of the

sample's external shape, and that are more tolerant to the loss

of the low spatial frequencies obscured by the beam stop.

This work was supported by ARO award DAAD190010500

and by the Director, Of®ce of Energy Research, Of®ce of

Basic Energy Sciences, Materials Sciences Division of the

US Department of Energy, under contract No. DE-AC03-

76SF00098. We are grateful to Drs S. Marchesini, H. He and

M. Howells for many stimulating conversations.

Figure 5
(a) Map of the reconstructed structure as obtained by direct methods. (b)
Experimental SEM image of the same gold balls for comparison. The
dark square is the window, from within which the ball positions were
extracted. Balls are also seen outside the window, on the partially
transparent silicon support.
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